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f "  Lunar Landing and Long-Range Earth Re-Entry GUI ance 

"p by Application of Perturbation Theory 
HENRY c. LESSING,* PHILLIPS J. TUNNELL,* AND ROBERT E. COATEt 

NASA A m s  Research Center, Moffett Field, Calif. 

A guidance scheme based on linear perturbation theory has been investigated. An im- 
proved capability has been achieved by the proper choice of independent variable and by 
appropriate weighting of the guidance gains computed by linear theory. The capability of 
this scheme applied to the descent-to-hover phase of lunar landing is demonstrated for two 
diiTerent types of nominal trajectory: a constant-thrust gravity turn maneuver, and a 
constant-thrust, constant-pitch-rate maneuver. To demonstrate the performance of this 
type of guidance scheme for atmosphere entry, it has been applied to the guidance of a vehicle 
entering the earth's atmosphere at  parabolic velocity. Its capability is evaluated for entries 
from abort eonditions, as well as for entries within the normal entry corridor, and effects of 
variations in life-drag ratio and atmospheric density are investigated. It is shown that for 
both lunar landing and atmosphere entry this guidance system, which uses a single nominal 
trajectory, and therefore requires minimum storage capacity, permits guidance to a selected 
landing site from a wide range of initial conditions. . J  

Nomenclature 

A 
C D  = d r q  coeEcient, diiiensionlcss 
F,v 

= aerodynamic acceleration, g units 

= linear theory gain for the a state variable used to 
determine the magnitude of the control variable 
7,  dimensions of 1/01 

ff = surface gravity, ft/sec* 
h = altitude,ft 
I.p = specificimpulse,sec 
KA,  K ;  = empirical dimensionless weighting factors 
L / D  = liftdrag ratio, dimensionlem 
m = m w ,  lb-secz/ft 
r 
S 
1 = time, sec 

V = total velocity, f p s  
V ,  
W = earth weight, lb 
2 

ZTG 

( * )  
Y = flight-path angle, deg 
a( ) 

e 
L7 ( i h / b ~ )  adjoint variable 
Subscripts 
i = initial 
f = h a 1  
r = reference or nominal 

= earth radius plus altitude, r. + h, f t  
= vehicle reference area, f t *  

T = thrust, lb 

= characteristic velocity, SIep In( mi/m,), fps  

= downrange, f t  or statute miles 
= range to  go, ZJ - 2, f t  or statute miles 
= derivative with respect to  independent variable 

= difference between actual and reference value of any 

= thrust orientation, positive upward, deg 
quantity,( ) - ( )7 

Introduction 

N the field of guidance of aerospace vehicles, the concept I of guidance about a nominal or reference trajectory has 
received considerable attention. It has been investigated 
for use in the midcourse phase of the lunar mission, and for 
vehicles re-entering the earth's atmosphere (e.g., Refs. 
1-5). The mathematical basis for this concept is perturba- 

Presented at  the AIAA-NASA 2nd Manned Space Flight 
Meeting, Dallas, Texas, April 22-24, 1963 (no preprint number; 
published in bound volume of preprints); revision received 
December 10,1963. 

* Research Scientist. 
I Research Scientist. 

Associate Member AIAA. 

tion theory,6. that is, the analysis of conditions in a limited 
neighborhood of a nominal trajectory. Nonlinear systems 
may be handled by the theory, because in the neighborhood 
of a known trajectory they can be described in terms of h e a r  
differential equations with varying coefficients. However, 
it is the restriction to the neighborhood of a known trajectory 
which forms the primary limitation on the usefulness of the 
theory, particularly in the case of atmospheric re-entry. 
The various proposed methods employing this concept for 
reentry have, in general, range capability of 6OOO miles or 
less. Theoretically, the proposal of Ref. 5 to store multiple 
nominal trajectories and associated feedback gains should 
permit guidance to any range, but the increased storage 
capacity required makes a search for a simpler approach 
desirable. The purpose of this paper is to show that by the 
proper choice of independent variable and use of empirical 
weighting factors it is possible greatly to increase the guidance 
capability of a linear perturbation scheme. This capability 
is achieved without increase in information storage require- 
ments. 

Theory 

Development of Control Equation 

In this section we mill derive the basic equation used in 
h e a r  perturbation guidance. Somewhat similar develop 
ments may be found in the literature (e.g., Ref. 7). Consider 
the set of nonlinear Merentia1 equations 

2, = F m ( ~ n , ~ r , ~ )  (1) 

where 

1 < n < M  
F = M known functions 
2 = M state variables 
u = P external force variables 
u = independent variable (such as time, velocity, etc.) 

Expanding Eq. (1) in a Taylor series about some desired 
nominal or reference trajectory and retaining terms to first 
order only gives 

62 - arnn6~,, = btnp6Up (2) 
M P 

This is a set of M h e a r  differential equations with varying 
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Fig. 1 Lunar landing approach. 

coefficients u,,(v) and bmp(u),  the solution of which describes 
the motion about the reference trajectory, where 

6 d V )  = zJv) - zdu) 

The set of equations adjoint to Eq. (2) is defined by 

x, + C U " , L  = 0 (3) 
A4 

Multiplying Eq. (2) by A,, Eq. (3) by 6x,, summing over 
M and integrating over the interval u to V,(Vi 5 v I V I )  

gives 

This is the basic equation for control about a reference condi- 
tion and was called by Bliss6 the fundamental formula. 
Equation (4) may be particularized by identifying the single 
sum at u = uf with the state variable z,, which it is desired 
to control (1 5 q 5 M ) .  Thus, identify 

X m 6 X m /  n, = 6X,1"/ (5) 
M 

Then 

To indicate the proper partial derivative, the following nota- 
tion has been introduced in the literature. Equation (6) 
is written 

(7) 

Equation (7) defines the boundary conditions necessary for 
Equation (4) iiiay now be thF. L1 ..+A- \ --l..\ u~!uuIvII ,\=, Y\u/ of Eq. (3). 

written 

Equation (8) is the basic equation by means of which an esti- 
mate can be made of the first-order change 62, of the state 
variable Z, from its reference value at the final condition 01, 

due to 1) a change 62, of any state variable zm from its refer- 
ence value at a prior condition v ,  and 2) a change 6u, of any 
external force variable up from its reference value during the 
interval u to v f .  

For simplicity, consider up to be control variables, and as- 
sume that the number q of state variables it is desired to 
control is equal to the number P of control variables. Then, 
given a desired final value 6z,(of) and given certain departures 
6z,(o): there is an infinity of control variable functions which 
will accomplish the desired final value. In  particular, there 
is a constant value 6u, over the interval u 5 VI 5 u t  which 
will accomplish the desired final value, and, with the notation, 

Eq. (8) may be written 

Solution of Eq. (10) for the control variables u, then gives 

Equation (1 1) is applicable to a complete three-dimensional 
analysis. All the guidance results obtained in this paper are 
two dimensional. It can be shown that to first order, these 
results are valid for three-dimensional applications. 

Insofar as the theory is concerned, the particular set of 
state and independent variables chosen is completely arbi- 
trary. There are practical considerations for using a state 
variable as independent variable rather than time, since this 
reduces M in Eq. (11) by 1, thus simplifying the guidance 
through reduced information storage requirements. In  the 
present investigation the state variables chosen were some- 
what arbitrary, but total velocity instead of time was used 
as independent variable because of the simplification just 
noted, and because it appears that it has additional ad- 
vantages as well. The most significant advantage is that 
the neighborhood of the nominal trajectory appears to be 
larger in t e r m  of velocity, or, perhaps more correctly, the 
excursions of the state variables on the actual trajectories 
relative to those on the nominal trajectory generally are 
smaller when compared on the basis of velocity. Obviously, 
the advantage of using the independent variable for which 
the 62, of Eq. (11) are minimized is that less violence must 
be done to the linear theory to make it operate over the range 
of conditions desired. 

Equation (11) defines a terminal control system in that the 
system makes no attempt to eliminate present errors, but 
instead acts to prevent the propagation of present errors of 
all variables into errors of the controlled variables at the 
final condition v = V I .  As formulated, the system defined 
by Eq. (11) attempts to use minimum control excursion for 
a maximum length of time. If the information possessed 
by the system is correct in the sense that all pertinent vari- 
ables have been accounted for, and if the system is in the 
neighborhood of the nominal trajectory where linearization 
of the equations is valid, Eq. (11) will command a control 
increment just sufficient to achieve the desired result if the 
increment is maintained to the final condition. Another 
formulation which has been used is to command the maxi- 
mum available control excursion for a minimum amount of 
time.a However, during the earth re-entry portion of the 
present investigation, it was found that (when attempting to  

T"lST-'?O-EARTH WEiGHT RATIO, T/W, 

w Fig. 2 Fuel required for gravity turn and constant-pitch- , rate maneuver. 
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operate outside the region wherein linearization is valid) 
this type of command tended to c a m  erroneous trajectory 
excursions from which it was later impossible to recover, and 
so was not sat2Sfactory. The form of cont,rol finally used 
was intermediate to  these two extremes; the guidance gains 
were adjusted through the use of empirically determined 
weighting functions, as will be described subsequeutly. By 
these t a o  means, the use of velocity as independent variable 
and empirical weighting of the guidance gains, it  was possible 
to extend greatly the operating range of the basic linear 
theory. 

Lunar Landing 
The guidance scheme just described will now be applied 

to the descent-bhover phase of lunar landing. The main 
features of the descent from orbit to the lunar surface are 
indicated in Fig. 1. A lWmile circular orbit was assumed, 
with the gross descent accomplished by means of a Hohmann 
transfer orbit whose perilune determined the initial condi- 
tions for that portion of the descent considered here-a 
guided letdown to an altitude of less than lo00 ft. 

Two maneuvers previously considered in the literature*,o 
were chosen as reference trajecbrie, the gravity turn, and 
the constant-pitch-rate maneuvers. The fuel required, in 
terms of the characteristic velocity, is shown in Fig. 2 for the 
two maneuvers as it  is affected by initial or perilune altitude 
and thrust level. Any desired value of thrust may be used 
for the constaEt-pitch-rate ;;;anewer for a given initial - altitude, in contrast to the single value of thrust necessary 
for the gravity turn. Both maneuvers require a large in- 
crease in fuel with increase in initial altitude. As a com- 
promise between fuel requirements and avoiding the moun- 
tainous lunar surface, an initial altitude of 75,000 f t  was 
chosen. This prescribed a T/Wc = 0.42 for the gravity turn. 
The thrust ratio for the constant-pitch-rate maneuver was 
chosen to be 0.56, the optimum value for this altitude. 
The characteristics of the resultant reference trajectories 

are shown in Fig. 3 in terms of the state variables chosen for 
use in the control equation; altitude h, flight-path angle y, 
and range 2. It is desired to control the final values of two 
quantities, range and altitude. The two control variables 
are thrust T and thrust orientation 0. Then the two con- 
trol equations from Eq. (11) are 

U17) = T, + F ~ . ~ ( W j h ( l r )  + F7T(V)Gy(V) - 

O W )  = OAV> + F&@(V)Sh(V> + 
The guidance gains associated with Eq. (12) are presented 
in Fig. 4. The gains associated with flight-path angle re- 
main finite over the velocity range; however, all other gains 
for both reference trajectories have singularities a t  zero 
velocity. Since this investigation was performed on an 
analog computer, rather severe storage limitations were 

F,  T( v) G Z T O ! v )  (12) 

F , B ( v ) b ( V )  + Fze(v)GzTf3(v) 

- GRAVITY TURN _________ CONSTANT PITCH RATE 
4 Vi =5570ft/S€t 

$ 80- 

2 -IWL 
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Fig. 3 Reference trajectory state variables. 
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Fig. 4 Linear theory guidance gains: a) constant pitch 
rate, b) gravity turn. 

necessarily imposed, a circumstance, however, which con- 
forms with the original intent of developing a guidance 
system with minimum information storage requirements. 
The dashed lines in Fig. 4 indicate the maximum values of 
the gains actually used in the investigation. 

The guidance capability using the constant-pitch-rate 
reference trajectory is summarbed in Fig. 5 in terms of the 
corridor of initial altitude and range limits from which it is 
possible to guide to a target area lo00 f t  in altitude and 10,ooO 
ft in range, the center of which is located 770,000 f t  down- 
rangee, the range for this particular reference trajectory. 
Changes in initial range and altitude were accompanied by the 
appropriate initial velocity and flight-path angle changes 
corresponding to the Hohmann trajectory passing through 
that point. 

Two corridors are shown, the smaller one corresponding 
to the use of the guidance gaim shown in Fig. 4. Multi- 
plying the gain FI' by a factor of 2 more than doubled the 
size of the corridor. Further increases in guidance capability 
were found to be possible by the same means, but character- 
istics such as increased fuel requirements, excessive angular 
rates, and other factors made the results unsatisfactory. 
Also shown in Fig. 5 are the fuel requirements for a perilune 

altitude of 75,000 ft. Only a moderate fuel increase occurs 

%o -20 b 20 4b $0 seoo3 
PERCENT REFERENCE RANCE>XOO 

'r 

Fb. 5 Guidance capability: constant-pitch-rate refer- 
ence trajectory. 
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Fig. 6 Guidance capability: gravity turn reference tra- 
jectory. 

for initial range errors. The curve shown results from use 
of the linear theory gains; however, the fuel requirements 
due to using the adjusted gain is not significantly different. 

Figure 6 shows the guidance capability obtained with the 
gravity turn reference trajectory. Again, the smaller corri- 
dor was obtained using the guidance gains of Fig. 4. By a 
moderate adjustment of the guidance gains, namely, the use 
of 1.5Fne and 0.85FZ8, the extreme increase in the guidance 
capability shown in the figure was obtained. The fuel re- 
quirement is shown in the lower part of the figure for the 
nominal altitude of 75,000 ft. A 100% range error requires 
a fuel increase of about 70 fps, which is equivalent to about 
14 see of hover time As noted, the only limit actually de- 
fined for this case is the downrange limit; the edges of the 
cross-hatched area correspond to the range of conditions in- 
vestigated. Thus, the actual amount of weighing applied 
to the linear gains was somewhat arbitrary. No attempt 
was made to define the other limits, because possibly there are 
important constraints such as target visibility which have 
not been considered in this investigation and which in an 
actual application would sufficiently define the problem such 
that, an optimum distribution of weighing can be deter- 
mined. The important result shown here is that the rather 
limited capability of the basic linear guidance scheme can be 
greatly extended by very simple means. 

Earth Re-Entry Guidance 
In the investigation of guidance for atmosphere re-entry 

at parabolic speed, a vehicle with a maximum L I D  = 0.4 
and W/CDS = 50 was chosen. The nominal atmosphere 
used was the 1959 ARDC model. 

The characteristics of the nominal trajectory chosen are 
shown in Fig. 7. Several factors were considered in choosing 
this trajectory. One factor was the easing of the restrictions 
upon the time of return from a lunar mission to a single 

h IJ.- -ziuI. 
0 8 16 24 32 40 0 8 16 2 4 :  

J. SPACECRAFT 

2 -8  

~ - 4  

.O -0 8 16 24 32 40 
VELOCITY, v .  ft/sec x 

Fig. 8 Linear theory guidance gains. 

earth site by seeking ranges up to one-half the earth's circum- 
ference. A 6000-mile nominal range was chosen since it is 
approximately in the center of the desired range envelope. 
A high-skip type of trajectory was chosen because it im- 
poses low total heat loads, and because the final range is less 
sensitive to state variable errors than it is for trajectories 
which have relatively low skip altitudes. Although not of 
concern in the present investigation, these considerations are 
of great practical significance in the design of the heat shield, 
and the backup and monitoring system for the primary 
guidance. 

Figure 
7 shows the characteristics of the reference trajectory in terms 
of the state var.iables chosen for use in the control equation: 
altitude rate h, aerodynamic acceleration A ,  and range 
2. It is desired to control the single quantity, range, and by . 
means of the control variable L / D ;  then the control Eq. 
(11) is 

The nominal LID for this trajectory is equal to 0.1. 

The guidance gains associated with Eq. (13) are shown in 
Fig. 8. These gains, determined by means of the linear 
theory, did not define a guidance scheme capable of handling 
the nonlinearities resulting from the large departures from 
the reference trajectory desired, even when account was taken 
of the multivalued nature of velocity evident in Figs. 7 and 
8. The gains actually used in the results to be presented are 
indicated by the dashed lines. Associated with these gains 
are the empirically determined weighting factors shown in 
Fig. 9 which enable the guidance system to operate over 
virtually the full range of vehicle capability. The combina- 
tion shown is not unique; other combinations also permit 
full guidance capability, a fact which will allow for optimiza- 
tion studies. The final form of the control equation is now 

This equation with the modified linear theory gains and the 
wrightiiig factorj just described were used to  obtain a:: the 
results to be presented subsequently. 

Figure 10 shows a typical guided trajectory for an entry 
angle corresponding to one of the extremes permitted by the 

_.^_ 

-SUPERCIRCULAR 
SUBCIRCULAR - _ _  

VELOCITY. v. ft/secx10-3 VELOCITY.~, ft/secx 10-3 

Fig. 7 Reference trajectory state variables. 

FINAL RANGE, xf.  STATUTE MILESXIO~ 

Fig. 9 Empirical weighting factors. 
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Fig. 10 Typical shallow entry guided trajectory,. 

vehicle's capability, the uncontrolled skip boundary. The 
uncontrolled skip boundary is d e h e d  as the shallowest re- 
entry angle a t  which the vehicle can acquire sufficient aero- 
dynamic force to control the subsequent trajectory to the 
shortest desired range. For the vehicle considered in this 
study the boundary is yi = -4.7". Another boundary de- 
fined by the vehicle's capability is the maximum acceleration 
boundary which is defined as the steepest re-entry angle for 
which the acceleration will not exceed the maximum desired. 
For the l0-g limit chosen for this study, the boundary is y, = 
-7.3". 
These boundaries are shown in Fig. 11; for ranges greater 

than approximately 6300 d w  mother rehicle capability 
boundary is defined by the maximum range possible at a 
given re-entry angle. Also shown in Fig. 11 are the data 
points indicating guided trajectories calculated to delineate 
the guidance capability. It can be seen that the guidance 
system is capable of operating over virtually the entire corri- 
dor defined by the vehicle itself. 
An item of significant interest in the evaluation of a guid- 

ance system is its ability to handle offdesign conditions. 
Three types of offdesign conditions were considered in this 
study: 1) re-entry from abort conditions, 2) variations in the 
vehicle L/D,  and 3) atmospheric variations The abort 
conditions considered were re-entries from circular orbit and 
from a velocity of 32,000 fps. The two re-entries ehown in 
Fig. 12s were initiated from a circular orbit a t  an altitude of 
600,OOO ft. The range traversed from the time of leaving 
orbit altitude until an altitude of 400,000 f t  was reached was 
4700 miles greater for the y, = -0.41" entry than for the 
y, = -1.59" entry. Comparison of this range increment 
with that possible through guidance as shown in Fig. 12a 
indicates that the thrust applied in orbit to initiate re-entry 
must be used as the primary range control in this type of 
abort situation. The results of Fig. 12a show, however, that 
the guidance system is capable of utilizing almost full vehicle 
capability. 

Two angles were considered in the re-entries shown in 
Fig. 12b for a velocity of 32,000 fps. At this velocity the ve- 
hicle has the capability, at the angle of -4.3", of extremely 
long range. As shown, however, the guidance system is 

UNCONTROLLED SKIP F A- 
D E-51 / 
W ? I i '  

Fig. 11 Guidancecapa- 
bility. 

0 2 4 6 8 IO 1 2 1 4  
FINAL RANGE, x,, STATUTE MILES x 10-3 

L / D = 0 4  .... ~... 

__ GUIDED 

b) 

Fig. 12 Abort conditions: a) re-entry from circular orbit, 
b) re-entry at 32,000 fps. 

incapable of achieving a range greater than 7500 miles for 
this offdesign condition. At the steeper entry angle of 
-7.2" the guidance is again able to utilize almost full vehicle 
capability. 

The density deviation from the 1959 ARDC atmosphere 
used in this study varied linearly from zero at 100,000 f t  to 
=t.!iO% a t  400,OOO ft altitude. The LID variations con- 
sidered n-ere either 5% greater or less than the value given 
by Eq. (14). A summary of these effects on guidance 
capability a t  various ranges is presented in Fig. 13. The solid 
line is a repeat of the information given in Fig. 11, that is, the 
guidance capability under nominal conditions. It can be 
seen that the LID variations affected the capability relatively 
little. At long ranges, however, the density variation caused 
a considerable loss in the guidance capability. It is antici- 
pated that including a component in the control equation 
sensitive to density deviations (the adaptive feature of Ref. 
5 )  will make a marked improvement. This:willibe investi- 
gated in the near future. 

theguidancecapability. E ?6 t Fig. 13 Effect of off- 
design conditions on 

0 2 4 6 8 IO I2 14 
FINAL RANGE, xf ,  STATUTE MILES x 
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errors in nominal or initial conditions. The use of a single 
reference traiectory in each problem means that the guidance 
method requires little storage capacity. 

I n  the lunar landing study, the guidance capability for a 
control system formulated with the gravity turn as the 
reference trajectory was far superior to one formulated with 
a constant-pitch-rate reference trajectory. With a single 
gravity turn reference trajectory, the guidance system could 
compensate for initial range errors of 100% of the reference 
value with a small additional fuel increment, equivalent to a 
characteristic velocity of 70 fps. 

I n  the earth re-entry problem it was found that with a 
single reference trajectory it was possible to obtain a guid- 
ance capability from 1500 to 12,000 miles for a range of entry 
conditions which utilized virtually all of the vehicle’s 
capability. 

For the abort conditions considered in this paper, the 
guidance system was generally able to make almost full use 
of the vehicle’s range capability. 

Errors of 5% in vehicle LID had little effect on the capa- 
bility of this guidance scheme. 

Density variations from the nominal affected the long- 
range guidance but had little effect on guidance capability 
for ranges less than 6000 miles. 

_ _ ~  ~ 
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